3.2.8 \(\int \frac {\cosh (c+d x)}{a+b \tanh ^2(c+d x)} \, dx\) [108]

Optimal. Leaf size=53 \[ \frac {b \text {ArcTan}\left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)^{3/2} d}+\frac {\sinh (c+d x)}{(a+b) d} \]

[Out]

sinh(d*x+c)/(a+b)/d+b*arctan(sinh(d*x+c)*(a+b)^(1/2)/a^(1/2))/(a+b)^(3/2)/d/a^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3757, 396, 211} \begin {gather*} \frac {b \text {ArcTan}\left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} d (a+b)^{3/2}}+\frac {\sinh (c+d x)}{d (a+b)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cosh[c + d*x]/(a + b*Tanh[c + d*x]^2),x]

[Out]

(b*ArcTan[(Sqrt[a + b]*Sinh[c + d*x])/Sqrt[a]])/(Sqrt[a]*(a + b)^(3/2)*d) + Sinh[c + d*x]/((a + b)*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 3757

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = F
reeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[ExpandToSum[b*(ff*x)^n + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 -
ff^2*x^2)^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] &&
IntegerQ[n/2] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\cosh (c+d x)}{a+b \tanh ^2(c+d x)} \, dx &=\frac {\text {Subst}\left (\int \frac {1+x^2}{a+(a+b) x^2} \, dx,x,\sinh (c+d x)\right )}{d}\\ &=\frac {\sinh (c+d x)}{(a+b) d}+\frac {b \text {Subst}\left (\int \frac {1}{a+(a+b) x^2} \, dx,x,\sinh (c+d x)\right )}{(a+b) d}\\ &=\frac {b \tan ^{-1}\left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)^{3/2} d}+\frac {\sinh (c+d x)}{(a+b) d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 54, normalized size = 1.02 \begin {gather*} -\frac {b \text {ArcTan}\left (\frac {\sqrt {a} \text {csch}(c+d x)}{\sqrt {a+b}}\right )}{\sqrt {a} (a+b)^{3/2} d}+\frac {\sinh (c+d x)}{(a+b) d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cosh[c + d*x]/(a + b*Tanh[c + d*x]^2),x]

[Out]

-((b*ArcTan[(Sqrt[a]*Csch[c + d*x])/Sqrt[a + b]])/(Sqrt[a]*(a + b)^(3/2)*d)) + Sinh[c + d*x]/((a + b)*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(207\) vs. \(2(45)=90\).
time = 2.68, size = 208, normalized size = 3.92

method result size
risch \(\frac {{\mathrm e}^{d x +c}}{2 \left (a +b \right ) d}-\frac {{\mathrm e}^{-d x -c}}{2 \left (a +b \right ) d}-\frac {b \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 a \,{\mathrm e}^{d x +c}}{\sqrt {-a^{2}-a b}}-1\right )}{2 \sqrt {-a^{2}-a b}\, \left (a +b \right ) d}+\frac {b \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a \,{\mathrm e}^{d x +c}}{\sqrt {-a^{2}-a b}}-1\right )}{2 \sqrt {-a^{2}-a b}\, \left (a +b \right ) d}\) \(149\)
derivativedivides \(\frac {-\frac {2}{\left (2 b +2 a \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {2 b a \left (-\frac {\left (\sqrt {b \left (a +b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (\sqrt {b \left (a +b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{a +b}-\frac {2}{\left (2 b +2 a \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d}\) \(208\)
default \(\frac {-\frac {2}{\left (2 b +2 a \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {2 b a \left (-\frac {\left (\sqrt {b \left (a +b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (\sqrt {b \left (a +b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{a +b}-\frac {2}{\left (2 b +2 a \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d}\) \(208\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(d*x+c)/(a+b*tanh(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-2/(2*b+2*a)/(tanh(1/2*d*x+1/2*c)-1)+2*b/(a+b)*a*(-1/2*((b*(a+b))^(1/2)-b)/a/(b*(a+b))^(1/2)/((2*(b*(a+b)
)^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2))+1/2*((b*(a+b))^(1/2
)+b)/a/(b*(a+b))^(1/2)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)+a+
2*b)*a)^(1/2)))-2/(2*b+2*a)/(tanh(1/2*d*x+1/2*c)+1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*tanh(d*x+c)^2),x, algorithm="maxima")

[Out]

1/2*(e^(2*d*x + 2*c) - 1)*e^(-d*x)/(a*d*e^c + b*d*e^c) + 1/2*integrate(4*(b*e^(3*d*x + 3*c) + b*e^(d*x + c))/(
a^2 + 2*a*b + b^2 + (a^2*e^(4*c) + 2*a*b*e^(4*c) + b^2*e^(4*c))*e^(4*d*x) + 2*(a^2*e^(2*c) - b^2*e^(2*c))*e^(2
*d*x)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 295 vs. \(2 (45) = 90\).
time = 0.39, size = 766, normalized size = 14.45 \begin {gather*} \left [\frac {{\left (a^{2} + a b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a^{2} + a b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a^{2} + a b\right )} \sinh \left (d x + c\right )^{2} - \sqrt {-a^{2} - a b} {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right )\right )} \log \left (\frac {{\left (a + b\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a + b\right )} \sinh \left (d x + c\right )^{4} - 2 \, {\left (3 \, a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} - 3 \, a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{3} - {\left (3 \, a + b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) - 4 \, {\left (\cosh \left (d x + c\right )^{3} + 3 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + \sinh \left (d x + c\right )^{3} + {\left (3 \, \cosh \left (d x + c\right )^{2} - 1\right )} \sinh \left (d x + c\right ) - \cosh \left (d x + c\right )\right )} \sqrt {-a^{2} - a b} + a + b}{{\left (a + b\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a + b\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a - b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} + a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{3} + {\left (a - b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a + b}\right ) - a^{2} - a b}{2 \, {\left ({\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} d \cosh \left (d x + c\right ) + {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} d \sinh \left (d x + c\right )\right )}}, \frac {{\left (a^{2} + a b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a^{2} + a b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a^{2} + a b\right )} \sinh \left (d x + c\right )^{2} + 2 \, \sqrt {a^{2} + a b} {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right )\right )} \arctan \left (\frac {{\left (a + b\right )} \cosh \left (d x + c\right )^{3} + 3 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + {\left (a + b\right )} \sinh \left (d x + c\right )^{3} + {\left (3 \, a - b\right )} \cosh \left (d x + c\right ) + {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 3 \, a - b\right )} \sinh \left (d x + c\right )}{2 \, \sqrt {a^{2} + a b}}\right ) + 2 \, \sqrt {a^{2} + a b} {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right )\right )} \arctan \left (\frac {\sqrt {a^{2} + a b} {\left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right )}}{2 \, a}\right ) - a^{2} - a b}{2 \, {\left ({\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} d \cosh \left (d x + c\right ) + {\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} d \sinh \left (d x + c\right )\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*tanh(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*((a^2 + a*b)*cosh(d*x + c)^2 + 2*(a^2 + a*b)*cosh(d*x + c)*sinh(d*x + c) + (a^2 + a*b)*sinh(d*x + c)^2 -
sqrt(-a^2 - a*b)*(b*cosh(d*x + c) + b*sinh(d*x + c))*log(((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*si
nh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 - 2*(3*a + b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 - 3*a - b
)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 - (3*a + b)*cosh(d*x + c))*sinh(d*x + c) - 4*(cosh(d*x + c)^3 +
 3*cosh(d*x + c)*sinh(d*x + c)^2 + sinh(d*x + c)^3 + (3*cosh(d*x + c)^2 - 1)*sinh(d*x + c) - cosh(d*x + c))*sq
rt(-a^2 - a*b) + a + b)/((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x
+ c)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d
*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b)) - a^2 - a*b)/((a^3 + 2*a^2*b + a*b^2)*d*cosh(d*x +
c) + (a^3 + 2*a^2*b + a*b^2)*d*sinh(d*x + c)), 1/2*((a^2 + a*b)*cosh(d*x + c)^2 + 2*(a^2 + a*b)*cosh(d*x + c)*
sinh(d*x + c) + (a^2 + a*b)*sinh(d*x + c)^2 + 2*sqrt(a^2 + a*b)*(b*cosh(d*x + c) + b*sinh(d*x + c))*arctan(1/2
*((a + b)*cosh(d*x + c)^3 + 3*(a + b)*cosh(d*x + c)*sinh(d*x + c)^2 + (a + b)*sinh(d*x + c)^3 + (3*a - b)*cosh
(d*x + c) + (3*(a + b)*cosh(d*x + c)^2 + 3*a - b)*sinh(d*x + c))/sqrt(a^2 + a*b)) + 2*sqrt(a^2 + a*b)*(b*cosh(
d*x + c) + b*sinh(d*x + c))*arctan(1/2*sqrt(a^2 + a*b)*(cosh(d*x + c) + sinh(d*x + c))/a) - a^2 - a*b)/((a^3 +
 2*a^2*b + a*b^2)*d*cosh(d*x + c) + (a^3 + 2*a^2*b + a*b^2)*d*sinh(d*x + c))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\cosh {\left (c + d x \right )}}{a + b \tanh ^{2}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*tanh(d*x+c)**2),x)

[Out]

Integral(cosh(c + d*x)/(a + b*tanh(c + d*x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*tanh(d*x+c)^2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choi
ce was done

________________________________________________________________________________________

Mupad [B]
time = 1.68, size = 154, normalized size = 2.91 \begin {gather*} \frac {{\mathrm {e}}^{c+d\,x}}{2\,d\,\left (a+b\right )}-\frac {{\mathrm {e}}^{-c-d\,x}}{2\,d\,\left (a+b\right )}-\frac {b\,\ln \left (\sqrt {-a}\,\sqrt {a+b}+2\,a\,{\mathrm {e}}^{c+d\,x}-\sqrt {-a}\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\sqrt {a+b}\right )}{2\,\sqrt {-a}\,d\,{\left (a+b\right )}^{3/2}}+\frac {b\,\ln \left (2\,a\,{\mathrm {e}}^{c+d\,x}-\sqrt {-a}\,\sqrt {a+b}+\sqrt {-a}\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\sqrt {a+b}\right )}{2\,\sqrt {-a}\,d\,{\left (a+b\right )}^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(c + d*x)/(a + b*tanh(c + d*x)^2),x)

[Out]

exp(c + d*x)/(2*d*(a + b)) - exp(- c - d*x)/(2*d*(a + b)) - (b*log((-a)^(1/2)*(a + b)^(1/2) + 2*a*exp(c + d*x)
 - (-a)^(1/2)*exp(2*c + 2*d*x)*(a + b)^(1/2)))/(2*(-a)^(1/2)*d*(a + b)^(3/2)) + (b*log(2*a*exp(c + d*x) - (-a)
^(1/2)*(a + b)^(1/2) + (-a)^(1/2)*exp(2*c + 2*d*x)*(a + b)^(1/2)))/(2*(-a)^(1/2)*d*(a + b)^(3/2))

________________________________________________________________________________________